导航菜单
首页 >  » 正文

_作战模拟器__作战模拟器中文版

_作战模拟器__作战模拟器中文版

您好,很高兴能为您介绍一下_作战模拟器的相关问题。我希望我的回答能够给您带来一些启示和帮助。

文章目录列表:

1.战争模拟器重型负载作用

2.军演中如何判断“伤亡”

3.虚拟现实有关知识

4.歼10是我国__的战机么?包括未公布的

5.军事战略体系

战争模拟器重型负载作用

战争模拟器重型负载作用是:

1、武器和装备测试:通过战争模拟器重型负载,可以对各种武器系统和装备进行测试和评估。例如,测试新型坦克的性能、武器系统的_度、导弹的射程等。

2、战术和战略评估:重型负载可用于模拟各种战术和战略场景,对不同的战术决策和战略方案进行评估。它可以模拟大规模的战斗、军事行动、指挥控制等,以评估其效果和可行性。

3、训练和演习:通过战争模拟器重型负载,军事人员可以进行实际的模拟训练和演习。这有助于提高军队的作战能力、熟悉战场环境、掌握战术技能,并测试不同军事策略的有效性。

军演中如何判断“伤亡”

但单纯使用空爆弹往往无法确定目标是否被击中,只能靠举报和自觉,演习结果更多的是靠导调部依据火力发射情况进行综合评估。为更_地判知官兵伤亡情况,激光模拟器便应运而生了。

激光模拟器是现代军演中_常用的先进仪器,即在实用武器上安装激光发生器,用没有杀伤力的低能量激光代替_、炮弹,同时在训练服上装上接收器及音响、烟火装置。实战演习中,人如果被激光射中,计算机就会分析中弹的部位及_类型,较轻的就发出受伤指令,同时限制受伤者武器的威力,如减少_反射_率;如击中要害,就会发出死亡指令,让中弹者身上的模拟器放出代表死亡的烟火,其武器系统就被关闭,此人就失去了继续作战的资格。

如今,我军已研制开发了激光模拟对抗训练控制系统。这套系统具有仿真火力交战、自动控制态势、实时发送信息、授权干预控制等功能,现在主要在坦克、装甲车、步战车上应用。安装该系统的坦克被激光弹命中损伤后,会被自动切断油路和电路,如想开动坦克,需经导调人员重新解码。

虚拟现实有关知识

虚拟现实是计算机与用户之间的一种更为理想化的人-机界面形式。通常用户戴一个头盔(用来显示立体图象的头式显示器),手持传感手套,仿佛置身于一个幻觉_中,在虚拟环境中漫游,并允许操作其中的“物体”。与传统计算机相比,虚拟现实系统具有三个重要特征:临境性,交互性,想象性。虚拟现实技术潜在的应用范围很广,诸如国防、建筑设计、工业设计、培训、医学领域。例如建筑设计师可以运用虚拟现实技术向客户提供三维虚拟模型,而外科医生还可以在三维虚拟的病人身上试行一种新的外科手术。

虚拟现实技术通过20多年的研究探索,于80年代末走出实验室,开始进入实用化阶段。目前,_上少数发达_在经济、艺术乃至军事等领域,已开始广泛应用这种_,并取得了显著的综合效益。据外刊报道,美国陆军1994年的“路易斯安娜94”作战演习,就是利用虚拟现实技术进行的。这次演习不但试验论证了美国陆军制定的条令、战术和部队编成,使之更加符合21世纪的作战要求,还节约演习经费近20亿美元。

那么,什么是虚拟现实技术呢?简单地说,就是人们利用计算机生成一个逼真的三维虚拟环境,通过自然技能使用传感设备与之相互作用的新技术。它与传统的模拟技术完全不同,是将模拟环境、视景系统和仿真系统合三为一,并利用头盔显示器、图形眼镜、数据服、立体声耳机、数据手套及脚踏板等传感装置。把操作者与计算机生成的三维虚拟环境连结在一起。操作者通过传感器装置与虚拟环境交互作用,可获得视觉、听觉、触觉等多种感知,并按照自己的意愿去改变“不随心”的虚拟环境。比如,计算机虚拟的环境是一座楼房,内有各种设备、物品,操作者会如同身临其境一样,可以通过各种传感装置在屋内行走查看、开门关门、搬动物品;对房屋设计上的不满意之处,还可随意改动。显然,利用这种虚拟现实技术进行建筑、机械、兵器等设计修改,实施技术操作训练和军事演习活动要容易得多,也便宜得多。

虚拟现实技术一经应用,就向人们展示了诱人的前景,因而受到各国军界的青睐。从90年代初起,美国率先将虚拟现实技术用于军事领域,主要用于以下四个方面:一是虚拟战场环境。即通过相应的三维战场环境图形图像库,包括作战背景、战地场景、各种武器装备和作战人员等,为使用者创造一种险象环生、几近真实的立体战场环境。以增强其临场感觉,提高训练质量。二是进行单兵模拟训练。让士兵穿上数据服,戴上头盔显示器和数据手套,通过操作传感装置选择不同的战场背景,输入不同的处置方案,体味不同的作战效果,进而像参加实战一样,锻炼和提高技术水平、快速反应能力和心理承受力。如美空_虚拟现实技术研制的飞行训练模拟器,能产生视觉控制,能处理三维实时交互图形,且有图形以外的声音和触感,不但能以正常方式操纵和控制飞行器,还能处理虚拟现实中飞机以外的各种情况,如气球的威胁、导弹的发射轨迹等。三是实施诸军兵种联合演习,建立一个“虚拟战场”,使参战双方同处其中,根据虚拟环境中的各种情况及其变化,“调兵遣将”、“斗智斗勇”,实施“真实的”对抗演习。四是进行指挥员训练。利用虚拟现实技术,根据侦察情报资料合成出战场全景图,让受训指挥员通过传感装置观察敌我兵力部署和战场情况,以便判断敌情,定下正确决心。美国海军开发的“虚拟舰艇作战指挥中心”就能逼真地摸拟与真的舰艇作战指挥中心几乎完全相似的环境,生动的视觉、听觉和触觉效果,使受训军官沉浸于“真实的”战场之上。

当然,虚拟现实还是一门年轻的科学技术,尚存在不少有待解决的问题。例如,在计算机生成的虚拟环境中,操作者每次转动头部,计算机必须更新三维图像,由于更新的数据太大,以致计算机还无法完成实时运算。这就造成了系统滞后。再如,美空军的虚拟现实模拟器产生的视觉运动信号与人的感觉之间也存在差异,容易引起头痛、眩晕等。

但不管怎样,虚拟现实技术毕竟开辟了富有发展潜力的新领域,它会随着时间的推移日臻完善,在军事领域的应用将会越来越广泛,发挥的作用也将会越来越大。

正如其它新兴科学技术一样,虚拟现实技术也是许多相关学科领域交叉、集成的产物。

它的研究内容涉及到人工智能、计算机科学、电子学、传感器、计算机图形学、智能控制、心理学等。我们必须清醒地认识到,虽然这个领域的技术潜力是巨大的,应用前景也是很广阔的,但仍存在着许多尚未解决的理论问题和尚未克服的技术障碍。客观而论,目前虚拟现实技术所取得的成就,绝大部分还仅_于扩展了计算机的接口能力,仅仅是刚刚开始涉及到人的感知系统和肌肉系统与计算机的结合作用问题,还根本未涉及“人在实践中得到的感觉信息是怎样在人的大脑中存储和加工处理成为人对客观_的认识”这一重要过程。只有当真正开始涉及并找到对这些问题的技术实现途径时,人和信息处理系统间的隔阂才有可能被彻底的克服了。我们期待这有朝一日,虚拟现实系统成为一种对多维信息处理的强大系统,成为人进行思维和创造的助手和对人们已有的概念进行深化和获取新概念的有力工具。

就像**《黑客帝国》里描述的那样,未来的我们竟可以生活在一个由电脑控制的虚拟_里。在这个_里,我们同样拥有各种感觉,同样拥有亲戚朋友,同样拥有工作,同样拥有现实_的一切“真实”。只是,这一切都是虚拟的。

人类有许多梦想,一些梦想已经变为现实,而有一些梦想也许永远都不可能实现。然而,有一种技术却能使一切梦想全部实现,这就是虚拟现实技术(Virtual Reality,简称VR)。

虚拟现实是在计算机图形学、计算机仿真技术、人机接_术、多媒体技术以及传感技术的基础上发展起来的交叉学科,对该技术的研究始于20世纪60年代。直到90年代初,虚拟现实技术才开始作为一门较完整的体系而受到人们极大的关注。

基本概念

概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。

虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于_上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。

从本质上来说,虚拟现实就是一种先进的计算机用户接口,它通过给用户同时提供诸如视觉、听觉、触觉等各种直观而又自然的实时感知交互手段,_限度地方便用户的操作。根据虚拟现实技术所应用的对象不同,其作用可表现为不同的形式,例如将某种概念设计或构思可视化和可操作化,实现逼真的遥控现场效果,达到任意复杂环境下的廉价模拟训练目的等。该技术的主要特征有以下几方面:

多感知性(Multi-Sensory)——所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能_于视觉、听觉、力觉、触觉、运动等几种。

浸没感(Immersion)——又称临场感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实_中的感觉一样。

交互性(Interactivity)——指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。

构想性(Imagination)——强调虚拟现实技术应具有广阔的可想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。

一般来说,一个完整的虚拟现实系统由虚拟环境、以高性能计算机为核心的虚拟环境处理器、以头盔显示器为核心的视觉系统、以语音识别、声音合成与声音定位为核心的听觉系统、以方位跟踪器、数据手套和数据衣为主体的身体方位姿态跟踪设备,以及味觉、嗅觉、触觉与力觉反馈系统等功能单元构成。

这里,虚拟环境处理器是VR系统的心脏,完成虚拟_的产生和处理功能。输入设备给VR系统提供来自用户的输入,并允许用户在虚拟环境中改变自己的位置、视线方向和视野,也允许改变虚拟环境中虚拟物体的位置和方向。而输出设备是由VR系统把虚拟环境综合产生的各种感官信息输出给用户,使用户产生一种身临其境的逼真感。其主要的研究内容包括以下几个方面:

动态环境建模——虚拟环境的建立是VR系统的核心内容,动态环境建模技术的目的就是获取实际环境的三维数据,并根据应用的需要建立相应的虚拟环境模型。三维数据的获取可以采用CAD技术,更多的情况则需采用非接触式的视觉技术,两者有机结合可以有效地提高数据获取的效率。

实时三维图形生成技术——三维图形的生成技术已经较为成熟,这里的关键是如何实现“实时”生成。为了达到实时的目的,至少要保证图形的刷新_率不低于15帧/秒,_好高于30帧/秒。

在不降低图形的质量和复杂程度的前提下,如何提高刷新_率是该技术的主要内容。

立体显示和传感器技术——虚拟现实的交互能力依赖于立体显示和传感器技术的发展,现有的设备远远不能满足需要,比如头盔式三维立体显示器有以下缺点:过重(1.5 kg至2kg)、分辨率低(图像质量差)、延迟大(刷新_率低)、行动不便(有线)、跟踪精度低、视场不够宽、眼睛容易疲劳等,因此有必要开发新的三维显示技术。同样,数据手套、数据衣服等都有延迟大、分辨率低、作用范围小、使用不便等缺点。另外,力觉和触觉传感装置的研究也有待进一步深入,虚拟现实设备的跟踪精度和跟踪范围也有待提高。

应用系统开发工具——虚拟现实应用的关键是寻找合适的场合和对象,即如何发挥想像力和创造性。选择适当的应用对象可以大幅度提高生产效率,减轻劳动强度,提高产品质量。为了达到这一目的,必须研究虚拟现实的开发工具,例如VR系统开发_、分布式虚拟现实技术等。

系统集成技术——由于VR系统中包括大量的感知信息和模型,因此系统集成技术起着至关重要的作用。集成技术包括信息的同步技术、模型的标定技术、数据转换技术、数据管理模型、识别与合成技术等等。

关键技术

虚拟现实是多种技术的综合,包括实时三维计算机图形技术,广角(宽视野)立体显示技术,对观察者头、眼和手的跟踪技术,以及触觉/力觉反馈、立体声、语音输入输出技术等。下面对这些技术分别加以说明。

实时三维计算机图形技术

相比较而言,利用计算机模型产生图形图像并不是太难的事情。如果有足够准确的模型,又有足够的时间,我们就可以生成不同光照条件下各种物体的_图像,但是这里的关键是实时。例如在飞行模拟系统中,图像的刷新相当重要,同时对图像质量的要求也很高,再加上非常复杂的虚拟环境,问题就变得相当困难。

广角(宽视野)的立体显示

人看周围的_时,由于两只眼睛的位置不同,得到的图像略有不同,这些图像在脑子里融合起来,就形成了一个关于周围_的整体景象,这个景象中包括了距离远近的信息。当然,距离信息也可以通过其他方法获得,例如眼睛焦距的远近、物体大小的比较等。

在VR系统中,双目立体视觉起了很大作用。用户的两只眼睛看到的不同图像是分别产生的,显示在不同的显示器上。有的系统采用单个显示器,但用户带上特殊的眼镜后,一只眼睛只能看到奇数帧图像,另一只眼睛只能看到偶数帧图像,奇、偶帧之间的不同也就是视差就产生了立体感。

用户(头、眼)的跟踪:在人造环境中,每个物体相对于系统的坐标系都有一个位置与姿态,而用户也是如此。用户看到的景象是由用户的位置和头(眼)的方向来确定的。

跟踪头部运动的虚拟现实头套:在传统的计算机图形技术中,视场的改变是通过鼠标或键盘来实现的,用户的视觉系统和运动感知系统是分离的,而利用头部跟踪来改变图像的视角,用户的视觉系统和运动感知系统之间就可以联系起来,感觉更逼真。另一个优点是,用户不仅可以通过双目立体视觉去认识环境,而且可以通过头部的运动去观察环境。

在用户与计算机的交互中,键盘和鼠标是目前_常用的工具,但对于三维空间来说,它们都不太适合。在三维空间中因为有六个自由度,我们很难找出比较直观的办法把鼠标的平面运动映射成三维空间的任意运动。现在,已经有一些设备可以提供六个自由度,如3Space数字化仪和SpaceBall空间球等。另外一些性能比较优异的设备是数据手套和数据衣。

立体声

人能够很好地判定声源的方向。在水平方向上,我们靠声音的相位差及强度的差别来确定声音的方向,因为声音到达两只耳朵的时间或距离有所不同。常见的立体声效果就是靠左右耳听到在不同位置录制的不同声音来实现的,所以会有一种方向感。现实生活里,当头部转动时,听到的声音的方向就会改变。但目前在VR系统中,声音的方向与用户头部的运动无关。

触觉与力觉反馈

在一个VR系统中,用户可以看到一个虚拟的杯子。你可以设法去抓住它,但是你的手没有真正接触杯子的感觉,并有可能穿过虚拟杯子的“表面”,而这在现实生活中是不可能的。解决这一问题的常用装置是在手套内层安装一些可以振动的触点来模拟触觉。

语音输入输出

在VR系统中,语音的输入输出也很重要。这就要求虚拟环境能听懂人的语言,并能与人实时交互。而让计算机识别人的语音是相当困难的,因为语音信号和自然语言信号有其“多边性”和复杂性。例如,连续语音中词与词之间没有明显的停顿,同一词、同一字的发音受前后词、字的影响,不仅不同人说同一词会有所不同,就是同一人发音也会受到心理、生理和环境的影响而有所不同。

使用人的自然语言作为计算机输入目前有两个问题,首先是效率问题,为便于计算机理解,输入的语音可能会相当罗嗦。其次是正确性问题,计算机理解语音的方法是对比匹配,而没有人的智能。

代表性设备

在VR系统中,有许多有趣的、功能不同的专用设备,下面选一些代表性的设备加以介绍。

BOOM可移动式显示器:它是一种半投入式视觉显示设备。使用时,用户可以把显示器方便地置于眼前,不用时可以很快移开。BOOM使用小型的阴极射线管,产生的像素数远远小于液晶显示屏,图像比较柔和,分辨率为1280×1024像素,彩_像。

数据手套:数据手套是一种输入装置,它可以把人手的动作转化为计算机的输入信号。它由很轻的弹性材料构成。该弹性材料紧贴在手上,同时附着许多位置、方向传感器和光纤导线,以检测手的运动。光纤可以测量每个手指的弯曲和伸展,而通过光电转换,手指的动作信息可以被计算机识别。

TELETACT手套:它是一种用于触觉和力觉反馈的装置,利用小气袋向手提供触觉和力觉的刺激。这些小气袋能被迅速地加压和减压。当虚拟手接触一件虚拟物体时,存储在计算机里的该物体的力模式被调用,压缩机迅速对气袋充气或放气,使手部有一种非常_的触觉。

数据衣是为了让VR系统识别全身运动而设计的输入装置。数据衣对人体大约50多个不同的关节进行测量,包括膝盖、手臂、躯干和脚。通过光电转换,身体的运动信息被计算机识别。通过BOOM显示器和数据手套与虚拟现实交互数据衣。

--------------------------------------------------------------------------------

虚拟现实的本质是人与计算机的通信技术,它几乎可以支持任何人类活动,适用于任何领域。

较早的虚拟现实产品是图形仿真器,其概念在60年代被提出,到80年代逐步兴起,90年代有产品问世。1992年_上_个虚拟现实开发工具问世,1993年众多虚拟现实应用系统出现,1996年NPS公司使用惯性传感器和_踏车将人的运动姿态集成到虚拟环境中。到1999年,虚拟现实技术应用更为广泛,涉足航天、军事、通信、医疗、教育、娱乐、图形、建筑和商业等各个领域。_预测,随着计算机软、硬件技术的发展和价格的下降,预计本世纪虚拟现实技术会进入家庭。

VR技术在医疗领域也大有作为。该技术可用于解剖教学、复杂手术过程的规划,在手术过程中提供操作和信息上的辅助,预测手术结果等。另外,在远程医疗中,虚拟现实技术也很有潜力。例如在偏远的山区,通过远程医疗虚拟现实系统,患者不进城也能够接受名医的治疗。对于危急病人,还可以实施远程手术。医生对病人模型进行手术,他的动作通过卫星传送到远处的手术机器人。手术的实际图像通过机器人上的摄像机传回医生的头盔立体显示器,并将其和虚拟病人模型进行叠加,为医生提供有用的信息。美国斯坦福国际研究所已成功研制出远程手术医疗系统。

在航天领域,VR技术也非常重要。例如,失重是航天飞行中必须克服的困难,因为在失重情况下对物体的运动难以预测。为了在太空中进行_的操作,需要对宇航员进行长时间的失重仿真训练。为了逼真地模拟太空中的情景,美国航天局NASA在“哈勃太空望远镜的修复和维护”计划中采用了VR仿真训练技术。

在训练中,宇航员坐在一个模拟的具有“载人操纵飞行器”功能并带有传感装置的椅子上。椅子上有用于在虚拟空间中作直线运动的位移控制器和用于绕宇航员重心调节宇航员朝向的旋转控制器。宇航员头戴立体头盔显示器,用于显示望远镜、航天飞机和太空的模型,并用数据手套作为和系统进行交互的手段。训练时宇航员在望远镜周围就可以进行操作,并且通过虚拟手接触操纵杆来抓住需要更换的“模块更换仪”。抓住模块更换仪后,宇航员就可以利用座椅的控制器在太空中飞行。

在对象可视化领域中,VR技术应用的例子是模拟风洞。模拟风洞可以让用户看到模拟的空气流场,使他感到就像真的站在风洞里一样。虚拟风洞的目的是让工程师分析多旋涡的复杂三维性和效果、空气循环区域、旋涡被破坏的乱流等。例如,可以将一个航天飞机的CAD模型数据调入模拟风洞进行性能分析。为了分析气流的模式,可以在空气流中注入轨迹追踪物,该追踪物将随气流飘移,并把运动轨迹显示给用户。追踪物可以通过数据手套投降到任意_的位置,用户可以从任意视角观察其运动轨迹。

在军事领域中,VR技术应用的一个例子是“联网军事训练系统”。在该系统中,军队被布置在与实际车辆和指挥中心相同的位置,他们可以看到一个有山、树、云彩、硝烟、道路、建筑物以及由其他部队操纵的车辆的模拟战场。这些由实际人员操作的车辆可以相互射击,系统利用无线电通信和声音来加强真实感。系统的每个用户可以通过环境视点来观察别人的行动。炮火的显示极为真实,用户可以看到被攻击部队炸毁的情况。从直升机上看到的场景也非常逼真。这个模拟系统可用来训练坦克、直升机和进行军事演习,以及训练部队之间的协同作战能力。

当然,虚拟现实技术的应用远不止以上这些。随着计算机技术的进一步发展,虚拟现实与我们的生活将日益密切。

初识VRML

VRML(Virtual Reality Modeling Language,虚拟现实建模语言)是一项和多媒体通讯(Multimedia Communication)、因特网(Internet)、虚拟现实(Virtual Reality,VR)等领域密切相关的新技术,其基本目标是建立因特网上的交互式三维多媒体。VRML于1998年1月被正式批准为国际标准(ISO/IEC 14772-1:1997,通常称为VRML97),创立了标准化进程的ISO/IEC记录,它还是_个用HTML发布的国际标准。

VRML是一种3D交换格式,它定义了当今3D应用中的绝大多数常见概念,诸如变换层级、光源、视点、几何、动画、雾、材质属性和纹理映射等等。VRML的基本目标是确保能够成为一种有效的3D文件交换格式。

VRML是HTML的3D模型。它把交互式三维能力带入了万维网,即VRML是一种可以发布3D网页的跨_语言。事实上,三维提供了一种更自然的体验方式,例如游戏、工程和科学可视化、教育和建筑。诸如此类的典型项目仅靠基于网页的文本和图像是不够的,而需要增强交互性、动态效果连续感以及用户的参与探索,这正是VRML的目标。

VRML提供的技术能够把三维、二维、文本和多媒体集成为_的整体。当把这些媒体类型和脚本描述语言(scripting language)以及因特网的功能结合在一起时,就可能产生一种全新的交互式应用。VRML在支持经典二维桌面模型的同时,把它扩展到更广阔的时空背景中。

VRML是赛博空间(cyberspace)的基础。赛博空间的概念是由科幻作家William Gibson提出的。虽然VRML没有为真正的用户仿真定义必要的网络和数据库协议,但是应该看到VRML迅速发展的步伐。作为标准,它必须保持简单性和可实现性,并在此前提下鼓励前沿性的试验和扩展。

歼10是我国__的战机么?包括未公布的

目前_的是国产歼10轻型单发战斗机。

飞火控系统

_初我国获得的“狮”数字式四余度飞行控制软件,只是整个软件的其中一部分。加上设计要求一直在改动,成飞为此在软件设计方面付出了巨大的努力。我国对数字线传飞行控制的研究有一定的基础,包括歼-6的变稳机、歼-8IIACT等,都是线传控制的重要试飞机种。611所仅用了3年时间就摸透了以色列的线传技术,研制成功了使用ADA写成了数字式四余度线传飞行控制系统软件,为外界所称道。即便是俄罗斯人的相应系统,在同一时期也还只是在研究之中。

数字线传系统加上合理的气动设计,歼-10机动性相当可观。不妨从一些公开文章研究一下。在关于“新型歼击机机载分子筛制氧氧气系统及其配套抗荷装备抗荷性能的研究”一文中,提到“分别以机载分子筛制氧器和备用氧为氧源进行抗荷系统物理性能试验,并有10名受试者参加,包括抗荷代偿两用裤配抗荷调压器、抗荷正压呼吸、抗荷系统装备的抗荷性能试验”。关键的话是“抗6.5G持续30秒试验,抗9G持续10秒试验”。该系统的抗荷代偿两用裤配抗荷调压器、抗荷正压呼吸、抗荷系统装备的抗荷性能分别为2.08G、1.92G、3.92G。六名进行抗6.5G/10秒试验的受试者和3名进行抗9G/10秒试验的受试者均顺利通过。结论是系统满足了新歼击机的机动性要求。呵呵,从抗过载能力上看可与F-16相比。

在雷达方面,预计将采用国产脉冲多普勒雷达,该雷达编号据称为149X,远期将采用国产相控阵雷达。按一般的推测,歼-10的脉冲多普勒雷达搜索距离差不多在100至130千米之间,攻击距离在80到90千米左右,至少能同时对付两个目标。由于雷达也是我国军工的弱项,为歼-10研制火控雷达也很艰难,国内只有南京第14电子研究所能担当此重任。没有好的雷达,歼-10本身性能再好,也只会象以往几个型号的作战飞机那样,无法攻击低空目标,缺乏多用途能力。据称,歼-10是我国_种配套雷达早于飞机本身研制成功的战斗机。而该雷达与美国F-16采用的APG-66/68两种雷达,有着密切的关系。此外歼-7、歼-8等国产歼击机已经开始装备自行设计的导弹告警装置和电子战设备,而歼-10也明显加装了这些设备,机身上多处有相关的天线罩和光电设备整流罩。而相应的雷达天线罩技术,也需要专门的研究制造,否则无法发挥雷达的应有性能。1987年雷达罩开始由南京玻璃纤维研究设计院负责研究,_终采用玻璃纤维仿形织物织成,并成功应用于TS导弹等国防军工重要配套部件。

在电子设备水平问题上,从飞机座舱显示器和仪表就能看出一些门道。估计歼-10会采用三具彩色下显,加一具平视显示器的座舱布局。其中两具下显显示飞航和武器状态,一具较大的下视显示器用于输出脉冲多普勒雷达传回的数字地图,以及切换平显的显示图像。因为歼-10显示设备布局方案在90年代初已经确定,因此与2000年后才出现的FC-1“枭龙”的座舱显示设备布局相比,略微显得老气,仍然保留了大量的机电式仪表。但应该指出的是,显示设备仅仅是整个飞火控系统中的输出终端,并不能完全代表一架战斗机的整体水平。在研制初期,曾研究过进口外国平显软件的可能,后来成飞自行开发了相关软件,解决了平显问题。至2007年左右,由于国产衍射平显科研生产工作的推进,预计歼-10战斗机可能逐步改装新型平显。

按国际上战斗机座舱上通常布局推测,歼-10的操纵必定是中央操纵杆加油门杆方式。此外座舱中不可少的设备还包括:备份用的机电式仪表和其他各种设备控制按钮等。目前基本可以确信,歼-10的液晶显示器采用苏州长风厂的产品。该产品系长风厂与美国厂商合作的产品,性能与美军现有液晶显示器相同。液晶显示器相当昂贵,价格以十万人民币做单位。

由于歼-10是国内研究的战斗机中电子系统_多、功能_复杂的型号,其电磁兼容情况也是非常值得考究的问题。目前,歼-10已通过了成飞下属西南电磁兼容监督检测中心的各项试验,电磁兼容性不成问题。该中心具有美国进口的全套电磁干扰自动数据采集系统和全套电磁敏感性自动测试系统。

动力系统

发动机一直是中国航空工业的软肋,同样也困扰着歼-10。在与西方交恶前,据说我国获得了美国第三代战斗机的涡扇发动机核心机,以此开始了国产涡扇-10发动机的研制工作。但由于根基太差,该涡扇和涡扇-6、涡扇-9的研制一样,过程极为曲折艰难,基本无法满足战斗机研制进度的要求。于是90年代起相关部门开始转向俄罗斯寻求帮助。1998年3月某西方驻京武官透露,_架装配俄制AL-31FN涡扇发动机的歼-10已经完成了组装并刚刚首航成功。但可以肯定,歼-10_终将采用专门为其改进的涡扇-10A涡扇发动机,性能与F-100、F-110等美国三代战斗机的发动机相近。涡扇-10是我国_台按照GJB241-87规范研制的推比8一级、大推力、双转子、混合排气、加力式涡扇发动机,作为歼-10、歼-11系列飞机的动力装置,该机遵循核心机派生的策略进行系列化发展,将成为我国未来二十年航空动力的主要型号。

1987年沈阳航空发动机设计研究所在引进CFM56核心机的基础上,以F110发动机为仿照对象,采用半研半仿的技术途径研制。进入九十年代,随九〇六工程的实施引进了俄制АЛ-31Ф系列发动机,研制单位又借鉴了相关型号的设计技术。_涡扇10验证机上台架试车,1997年进入PFRT阶段, 2002年6月6日装J-11WS首飞,2003年底进入定型试飞阶段。由于涡扇-10系列研制进度严重滞后,因此必需引进AL-31系列应急。为此俄罗斯AL-31的设计局专门演化了AL-31FN型(上图),机匣外观改变以适应歼-10现有设计。该发动机推力122.5千牛,长度5米,直径1.18米,进气口直径0.91米,耗油率0.699kg/DaNh,重1759千克,这些数据与Al-31有一定差别。此外俄方还在2002年航展上演示了用于AL-31FN的矢量喷口改进型号。

正如之前所说,歼-10要用不同的发动机,就必定要改变机体设计,后机身外形也改得颇为怪异。这种中途改变,必然要付出性能上的代价,其严重程度则难以估量。机身内部结构也必然要发生变化,难免有“削足适履”的难处。可以确定的是歼-10的发动机推重比应达到8.5左右,整机推重比明显超过1。这里要强调一点的是,歼-10在制造出_架原型机后很长的时间里,都面临着只有洋人发动机可用的尴尬局面。截至2004年1月,莫斯科Salyut公司已经完成了为期两年的向中国出口AL-31FN发动机的合同,共提供了54台AL-31FN。原计划2002年国产涡扇将顺利定型,但一直到2004年,国产涡扇发动机方才传来捷报,歼-10终于有望获得一颗“国产心”。

2005年,涡扇-10A发动机通过初始寿命试车考核,标志着该发动机顺利完成设计定型的全部考核试验。这型发动机研制历时18年,凝结着两代航空人的心血。2005年5月11日设计定型持久试车在六○六所试车台正式启动,经过85天的试车考核、完成规定的长试科目,9月27日涡扇10设计定型持久试车顺利通过航定办评审,全部定型考核项目计划于2005年完成。特别是中国一航成立后,该重点型号发动机被列入重点工程,各参研单位_进取,受挫不馁,超常拼搏,突破重重难关,终于实现了我国航空发动机研制能力质的突破。我国航空发动机制造技术继“昆仑”、“秦岭”发动机之后又迈上一个新的台阶。该发动机为解决风扇喘振裕度问题,先后论证、设计了8种风扇方案,经过多次试验才确定了目前使用的方案。该发动机已研制了15年,共试制了 24台发动机,平均每年也不到2台。该发动机的涡轮叶片的加工周期是12~15个月,而俄罗斯类似叶片的加工周期仅为4~6个月;该发动机1级风扇叶片(带凸肩大叶片)的加工周期是10~12个月,而英国RR公司类似叶片的加工周期为6~8个月。”

双座弹射试验图

2006年2月,在一航集团发动机事业部的工作会议上,涡扇-10项目终于对外正式宣布研制成功,按有关技术要求完成了全部地面考核试验和空中试飞任务,实现了设计定型。涡扇-10定名为“太行”。总设计师为一航动力所的张恩和。

2007年,在访谈中,部分_和试飞员表示,目前而言AL-31FN的表现要比涡扇-10A好一些,其加速性、空中启动包线和地面启动时间都要好一些。目前涡扇-10A地面启动时间约90秒,AL-31FN只要一分钟;在空中停车后,要进行风车启动,涡扇-10A的速度下限是600千米/小时左右,AL-31FN只要450千米/小时加速性能方面,AL-31FN只需5秒就能把速度增加起来,涡扇-10A要超过5秒。这几个不足中,_要紧的是空中启动包线,因为歼-10是单发飞机,停车后要靠降低高度来增大速度,如果停车高度比较低,可能没有足够高度来加速到600千米/小时,那么就只能跳伞弃机。

这里引用一段网友aliasmaya的分析

一家之言、多是猜测,请诸位同好批评指正!我也非常希望诸位能就涡扇10的加速性能、风车特性、起动机、调节计划等内容发表评论。关于涡扇10的空中风车起动问题,有兴趣的话建议查阅04年某期的《航空发动机》杂志刊登的论文,张绍基就此有专门论述,采用经过改进的供油规律进行发动机地面起动试验、空中风车起动试验,得到了某些数据,空中起动左边界:H=4km、Ma=0.52、Vb=500km/h......发动机“风车状态”(WindMilling)的概念,即由于各种原因导致发动机停车,而在气体动力、转子惯性、阻力矩等共同作用下使得发动机继续转动,并在短时间稳定在某一转速的状态。发动机的空中风车启动是非常关键的。

АЛ-31Ф在泼辣性方面是非常不错的,压气机喘振裕度大,抗(温度、压力)畸变能力强、燃烧室的点火特性较好(记得有28个燃油喷嘴,太行有20个),对于提高发动机加速性能是很有利的(不过这需要以重量的代价来换取),加速线可以更大幅度的偏离正常工作线而发动机不致发生喘振、失速等故障,并且其多元复合调节的调节计划,与发动机的配合堪称_!老毛子的混合式控制系统被认为是液压机械-模拟电子调节系统设计中的典范。我看手册中对分段式的复合控制规律介绍,实在是搞脑筋!佩服他们的设计师能够巧妙的实现工程应用。我觉得将АЛ-31Ф的混合式控制系统(虽经过适应性改进)移植到涡扇10,所引起的问题比较多,今后一定时期内还会是不断暴露-再完善的过程。现在关于涡扇10加速性、起动时间以及空中风车起动边界窄等问题似乎也能看出和原型调节计划不适应、不匹配相关联,而适应性改进需要吃透原型机设计原理、吸收其精髓的基础上发展的(这就考验113与614的能力了,估计请外援的代价不菲,他们更可能会留一手)。

另外主燃烧室的点火特性也有待改进(贫、富油点火边界比较窄),这属于先天的问题、从F101那里遗传的。看到有不少论文谈论这方面内容以及建议的改进措施,比如加速控制改进、优化,空中风车起动特性分析,燃烧室点火特性改进等等。关于涡扇10的起动时间较АЛ-31Ф长,我猜测几个可能的因素,比如燃气涡轮起动机的功率还不够强劲,而涡扇10的点火转速比较高,起动机脱开转速可能也比АЛ-31Ф的高(CFM56-3的起动点火转速>20%,АЛ-31Ф大约为15%吧。因为在启动过程、低转速时,其主燃烧室的气流小、压力低,气动雾化性能较差,因此贫油熄火边界窄,记得教课书上说这是”两相燃烧中的特殊问题”,所以选取较高的转速点)。关键是燃烧室有一个适当的油气比,保证点火可靠、工作稳定,这也得看供油计划的设计了。涡扇10采用了608研制的起动机(不知道是否是参照了ГТДЭ-117,见图),目前还在研制功率增大型。空中风车启动的差距,我推测还是源自АЛ-31Ф的调节计划与涡扇10风车特性的适应性问题,目前的涡扇10没有采用FADEC。另外主燃烧室的点火特性也有待改进。换装614的国产电调是目前涡扇10急需的改进措施(之一),以充分发挥发动机的性能潜力。涡扇10火焰筒头部是采用较贫(油)的设计(追求高温升,可以得到高的涡轮前温度,这样需要增加燃油供应,但又得防止冒烟,只能增加进气量,导致油气比下降,低工况情况下容易发生贫油熄火),点火特性与稳定性是比较紧张的。

改善风车起动性能的某些措施,可以增设补氧系统、提高点火装置的可靠性等,АЛ-31Ф或许也有起动补氧系统?我猜想АЛ-31Ф加速性好,可能很大程度上得益于高喘振裕度。缩短加速时间,就要求更大的涡轮剩余功率,也就是要快速升高涡轮前温度T4。在加速过程中,燃油供应量需要快速增加(在极限范围内,尽可能大),但是升高的T4对于高压压气机稳定工作会产生不利影响(趋向喘振边界,因为高压转子的惯性大,转速增幅不能跟上T4增加的幅度)。倘若压气机的喘振裕度大,那么加速线可以更大幅度偏离稳态工作线,也就是说可以采取更短的加速途径。涡扇10的高压压气机增压比大、级负荷水平高,或许是导致发动机加速性不如АЛ-31Ф的一个因素。

结构工艺

在机体结构和制造工艺方面,歼-10_是_第三代战斗机水平。歼-10翼身融合体和大三角翼布局使得内部油箱的容积增大,有助于改善中国战斗机航程短的问题。由于我国复合材料技术的发展,可以相信歼-10复合材料的用量应能达到国际第三代战斗机的水平。北京航空制造工程研究所承担了歼-10的复合材料构件制造、钛合金热成形、框肋类零件数控加工、机翼壁板抛丸成形以及计算机辅助制造(CAM)软件开发、蜂窝芯建模等任务,同时提供复合材料树脂和蜂窝芯。上述工作,对我国发展复合材料蜂窝夹芯构件设计与制造技术起到了推动作用。1998年首飞后,该所荣获“首飞集体功”。目前歼-10的复合材料垂尾及内外侧升降副翼仍在该所小批量生产。

歼-10垂尾根部布置了减速伞舱,伞具由长期研制生产减速伞、降落伞、炸弹伞的宏伟机械厂负责研制,是类似苏-27的十字形结构。歼-10的前起落架为双轮,可能考虑了着舰或粗暴着陆的需求,向后收起。该前起落架在研制时是三“新”产品,成飞公司仅为此就组织了4个突击队、80多人攻关,改造机床、实验、试制产品并行开展。其中以全国十大杰出青年岗位能手张林为首的攻关组,将公司普通车床改造成多用车床,成功实现了前起落架的挤压、滚压螺纹加工,达到了各项技术指标。其轮胎由中橡集团曙光橡胶工业研究设计院负责研制,该院具有生产波音等大型客机的橡胶轮胎的丰富经验。新的主起落架在机身下方,向前收起,估计同时需要旋转一定角度。但是舱盖外形相当怪异,可以说比较丑陋。歼-10的起落架采用了我国自行研制的碳刹车机轮、碳刹车盘及碳盘防氧化涂层,上述设备通过了中国航空机载设备总公司组织的技术评审,于91年装机试飞,97年随整机成功首飞。

武器系统

上述起落架布局类似F-16和“阵风”,让出了宝贵的机翼下的空间,便于携带更多_武器,预计_点可达到11个。目前所知,由于机身设计的变化,歼-10挂点改为共9个,机腹3个,两翼下各3个。左图则为歼-10早期的挂架布置方案。减速板分为四个,位于翼身融合体后部的上下表面。

歼-10仍然安装了固定机炮,应为23-3双管23mm机炮,布置在机腹进气道下方。随着空空导弹技术的发展,取消固定机炮的设想再度接近实现,例如“台风”战斗机的部分型号就没有装备固定机炮。在这种前提下,歼-10沿用了性能落后、但稳定可靠的23-3机炮,应该说情有可原。

空空武器包括“霹雳”系列空空导弹的多个型号。目前可用的组合是仿自以色列怪蛇-3的霹雳-8近距空空导弹,加上国产霹雳-11中距半主动雷达制导导弹。未来则将采用国产主动雷达制导导弹。公开展览上__路面的离轴发射角达120度的瞄准头盔,也应该会加以应用。至2004年,歼-10尚不具备_对地攻击能力。我国机载光电探测吊舱已经成熟,因此歼-10在不久的将来,可使用包括激光导引炸弹在内的多种_制导空地武器,C-801反舰导弹估计也不会少。留意一下下图机翼下挂的弹体,象什么型号?同时在这个图中可以清晰的看到减速板。

随着FC-1携带的SD-10中距主动雷达制导导弹的公开,歼-10将会拥有更加强大的武器。目前已确定SD10作战高度0~25千米,_发射距离70千米,_速度4马赫,_使用过载38g。弹长3850mm,直径203mm,翼展674mm,弹重180kg。据媒体报道,2002年8月某团“为我国自行研制的三代机配上国产空空导弹立下来汗马功劳”,该团“又一次成功完成某型导弹试验任务”,该弹“具有发射后不管的特点”。这里所说的三代机很可能就是指歼-10,而“发射后不管”的新型空空导弹推测为“霹雳-12”,即SD10的国内编号。下图为SD-10,以及负责该弹研制工作的空空导弹研究院已故总设计师董秉印同志。

2006年,杂志上出现了歼-10携带霹雳-12空空导弹的,至于SD10与霹雳-12的关系,至今未有任何_的说法。

识别霹雳-11与霹雳-12也是一个有趣的问题。假如能看到导弹原貌,两者之间的区别是十分明显的。如果只能看到局部,可以注意突起在弹体之外的长条形电缆整流罩的位置,霹雳-11的整流罩在侧面,而霹雳-12的则在正下方。

歼-10的生产工艺也是一个值得注意的问题。尽管工艺不代表飞机的性能,但反映了整个_工业的基本水准。歼-7E的机身明显比以往的国产战斗机要漂亮光滑得多,因此可以断定歼-10不会差。实际上,歼-10也采用了三代机所特有的复合材料、高强度金属材料(主要指钛合金)大型框架等技术,尽管用得不多,但毕竟掌握了这些技术。成飞的歼-7是国内_采用计算机辅助设计(CAD/CIMS)等先进设计技术的工业产品。而_起,成飞在国内_实现863重点工程项目CIMS的应用,该工程为歼-10研制成功作出了巨大贡献,获1996年航空工业总公司科技进步一等奖,1997年_技术进步二等奖。同时,成飞长期与波音等外国公司有合作关系,外包生产波音客机的部件或舱段,积累了大量西方先进的生产工艺技术、经验、管理方法等,人员素质也得到了很大的提高。这都有利于成飞进行新歼的研制。摩登而漂亮的成飞车间,装备了精良的数控机床。相比起歼-8那幅工人们拿着铁锤的,唉 ……

目前歼-10的主要问题在于研制周期和发动机方面。毕竟歼-10是以_战斗机70年代的水准为基础研制的,待研制成功大量装备部队,与第三代战斗机的改进型号(如F-16 BLOCK50、米格-29SMT等)和2008年将服役的J_相比,歼-10将变得毫无优势可言,甚至落后。而和沈飞逐步全面国产化的歼-11相比,歼-10也并无优势,甚至贵而性能不如。发动机则是解放军战斗机的致命弱点、中国航空的耻辱,连涡喷-7和“斯贝”都用了这么久,甚至“斯贝”今天才实现国产化,实在不太想去提它。尽管有了AL-31FN,但我们始终需要自己的好涡扇。按2002年底的一些消息,国内的新涡扇发动机项目已经做出了好成绩,歼-10的心脏将得到强有力的保证。

歼-10必将有着较歼-7、8优良的作战性能,将和苏-27SMK、苏-30及歼-11形成高低搭配,为国防做出重大贡献。对于大幅度提高我空军的作战能力,也许我们必须寄更多希望在国产化的歼-11身上,毕竟该机拥有一个比歼-10更大的_。

关于歼-10的曝光,中文互联网上曾经发生了_的“歼-10泄密”事件。2000年某日,一个据说为航空院校的网友帖了一幅在国内_的鼎盛军事论坛。这幅照片导致了鼎盛军事论坛被迫闭门思过一个月,闹得沸沸扬扬。结果如何不得而知,爱好者们各有论断。随后又出现了其他的一些风浪,包括有人说在成都拍到了歼-10的照片,然后还有“歼X首飞纪念章”事件,进一步把歼-10“不灭传说”的江湖地位不断升华。到了2001、2002年,歼-10泄密可谓“如火如荼”,甚至有人公开发表在机场围墙外拍摄的宽幅歼-10照片,众军迷大呼过瘾。

在很长的一段时间里,许多网友前往成都的132厂机场等待歼-10以及FC-1等新型战斗机试飞。许多网络上流传的“_”照片由此而来。甚至还发生过向台湾情报人员售卖相关资料的泄密事件。

目前据推测,部分歼-10原型机应在西安阎良试飞研究院进行火控及武器试验,据说打空靶已获得成功。另外关于新涡扇和AL-31FN的说法很多,外界认为这个问题仍缠绕着歼-10。此外,按进度推测,歼-10于2005年起有望发展出出口型号,售价约2500到3000万美元。如与俄罗斯等方面合作采用成熟可靠的火控雷达、空地武器等系统,可能会促进外销。另一个得到成飞总师杨伟侧面证实的消息是,2003年,以全面的空地作战能力为目标的歼-10双座型正式启动图纸工作,很快有望面世。至2004年,双座型号已成功试飞。

经过不懈努力,至2003年3月左右,歼-10实现小批量生产和装备部队。有意思的是,在这时歼-10仍未_后定型,还需边试用边改进,首批量产型号也分多个细节不同的小批次。即便定型也会不断进行改进试验,从而不断验证新技术与新设计。而双座型的发图工作也进行顺利。至此,歼-10的研制可以说基本成功。但该型号很可能不会大量装备解放军,而是作为一个试验改进的_,以提高我国航空技术水平,促生更新型的国产歼击机。下图为中华网军事论坛上发表的歼-10双座图。

2003年3月10日,两架歼-10量产型原型机前往北京进行汇报表演,当天宋总师说:“18岁了,今天终于参军了!”。3月23日,611所召开了重点型号大会,对歼-10工程给予了充分肯定和高度评价,尤其是通过该型号研制,提高了我国航空工业的研制能力,锻炼和培养了一支高素质、高水平的人才队伍,将为我国航空工业进一步发展发挥重要的作用。目前歼-10已开始交付试飞部队进行进一步检验。2003年是歼-10工程的“决胜年”,估计歼-10也将逐步解密。

2004年2月,成飞表示,与有关兄弟单位在中航一集团的_下,联合中航技共同完成了下一代外贸机的申报批准工作。成飞正加紧进行我国下一代外贸机的研制工作,以填补我国外贸军机高端机型的空白,形成我国军机外贸高中低档机型“三箭齐发”的格局。这显然指的是歼-10的出口型号。成飞如能成功出口歼-10,将是我国航空工业极为重要的一个里程碑,同时也是解决解放军对歼-10兴趣日减这一窘境的_方法。

2004年底,611所自行研制的新型飞行训练模拟器顺利通过用户验收,正式交付空军。据信该模拟器即歼-10的训练模拟器。该飞行训练模拟器是目前国内_的飞行训练模拟器,达到了国际先进技术水平,主要用于飞行员改装训练、特殊情况处置训练、综合战斗科目训练和战术使用研究。它实现了对显示系统重要部件的国产化,提高了战技性能指标,改善了维修性,大大降低了对用户的使用维护要求。在验收过程中,用户代表进行了2000余项测试,全部达到合同要求。该飞行训练模拟器的按期交付标志着611所已形成批量生产训练模拟器的能力,是611所将先进的仿真模拟技术转化为产品,向产业化方向发展的重要里程碑。

2005年秋季,歼-10双座战斗/教练机通过了设计定型审查。该型号是中国空军的重点型号,于2000年正式立项,明确规定必须在5年内定型并装备部队。其研制成功填补了我国拥有自主知识产权的新一代歼击机的空白,并成为我国航空武器研制历史上_个完全按照时间节点研制、完全满足战绩要求指标的飞机,这标志着我国军机发展在战略部署、重大决策、组织管理以及战斗/教练机的研制能力上又上了一个新的台阶。以往我国的_飞机研制工作,出于种种因素的限制,往往严重拖延,甚至先装备再做大幅度修改,直接影响了战斗力。一般来说,国际上在研制第三代战斗机时会同时研究单座战斗机和双座同型飞机。三代战斗机的飞行性能比较好,一般的教练机无法让飞行员掌握其飞行特点,因此一般会让新飞行员在双座机上作改装训练。与此同时,双座型战斗机一般还拥有单座机的大部分作战能力,并且因为双人的优势而更加适合执行对地攻击任务,因此有很多双座战斗机在战时也担负了攻击任务,典型的例子比如F-16D、F-15E、SU-30等。

对于歼-10前景,近期又有一些无法证实的传言。此处特引用一些网友的意见,仅供参考。请点击此处浏览。

以下技术数据为估计值

机长: 14.57米

机高: 4.78米

翼展: 8.78米

_起飞重量: 19,277千克

发动机: 1台AL-31FN涡扇发动机或涡扇-10A涡扇发动机

_推力:112.6千牛(AL-31FN)

_飞行速度: Mach 2+

转场航程:大于3000千米

_过载: 7g(持续)/10G(瞬时)

军事战略体系

比较接近的资料。

战场环境是一切军事行动的空间基础,战场环境仿真是目前军事作战模拟领域研究的热点。本文讨论了战场环境的构成、战场环境仿真的主要内容,重点讨论了虚拟现实技术在战场环境感知仿真中的应用和关键技术。

关键词:战场环境,战场环境仿真,虚拟现实

战争具有很强的实践性特点,指战员的指挥艺术和作战能力,都需要在一定的战争环境中得到锻炼和提高。战争年代,这种能力可以通过真正的战争实践得以积累,但这种实践是不可重演、不可试验的,其代价也十分高昂。因此,即使在战争年代,非战时的训练也成为决胜的关键,指导训练的标准就是战争实践本身。和平时期,军事演习是一种普遍的训练方法,驾驭战争实践的能力是通过各种作战样式的试验来积累和提高。由于缺少实际战争的检验,各训练样式也就规定着未来作战的样式。

自人类历史上出现战争以来,人们对军事训练的研究都是以对战争规律的学习和探讨为目的,并在训练领域逐渐形成了“作战模拟”这一特殊的研究主题。作战模拟是对包括战争规律和战争指导规律两个方面在内的战争本质规律的模拟[1],其_的一点就是要创造一个贴近实战的训练环境,使得各类受训人员能够在此环境中得到恰如其分的训练[2]。

战场环境是敌对双方作战活动的空间,在现代作战模拟中,要营造一个贴近实战的训练环境,首先就要根据仿真原理来建立一个符合特定的作战训练科目需要的数字化的战场环境,这就是战场环境仿真(Battlefield Environment Simulation)。战场环境仿真在内容上包括战场感知 虚拟现实是二十世纪90年代末出现的一种十分有效的仿真技术,本文将重点讨论如何运用虚拟现实技术来实现战场环境仿真。

1.战场环境仿真概述

1. 1 战场环境的构成

战场环境是指作战空间中除人员与武器装备以外的客观环境。从战争所涉及的客观因素来分析,战场环境应该包含战场地理环境、气象环境、电磁环境和核化环境。也许,随着网络信息战的形成,战场网络环境也将成为战场环境的一个重要的组成部分。

战场环境具有多维性、互动性的特点。多维性的含义是:①战场环境是由多个具有自身变化规律的客观环境构成的,上述的四个环境分属于不同的学科领域;②这些客观环境的空间形态是随作战过程而演变的。互动性的含义是:上述环境之间互有影响,其中,地形环境是其他环境的物理依托,是可以进行空间定位和加载各种作战信息的基础。如图1所示,战场环境中,气象环境与地理环境互有影响,气象环境具有地缘特点,如不同的地理位置具有热带、亚热带等气象特征,而气象环境会影响地理环境,如流水侵蚀地貌、冰川地貌的形成,雨天和晴天对地面土质有影响,进而影响行军速度;地理环境和气象环境都对电磁环境的形成有重大影响,不仅规定了电子设施的分布,还决定着电磁波的传递范围和受气象干扰的程度;战场核化环境的形成,与核设施的地理位置及其周围的环境有关,核污染的区域的形成和发展与地理环境和气象环境密切相关。

1.2 战场环境仿真及其描述方式

战场环境仿真是指运用仿真技术来描述战场环境。仿真(Simulation)是通过系统模型的实验来研究一个存在的或设计中的系统。计算机仿真(也称数学仿真)是指借助计算机,用系统的模型对真实系统或设计中的系统进行试验,以达到分析、研究与设计该系统的目的[3]。在这里,系统是指为了达到某种目的的一组具有特定功能、彼此相互联系的若干要素的有机整体。对一个系统的仿真涉及三个要素:系统、系统模型、计算机,而联系这三个要素的基本活动是:模型建立、仿真模型建立和仿真实验[4](如图2所示)。

如果把战场环境作为一个战场空间系统来看待,其特定功能就是构成战场的空间载体和物理条件,战场环境中各类环境的相互关系则构成这个空间载体的有机整体。运用计算机实现战场环境仿真,首先需要把战场环境数字化,即建立战场环境模型,数字地图就是一种典型的战场环境模型。这种模型具备通用性,但往往不能满足一些特殊的需求,例如现代作战模拟由于仍沿袭兵棋的推演方式,需要把地形环境数据按一定分辨率处理成按格网存储的数据,而且这些数据还随着作战过程的展开而动态变化。这种把战场环境模型处理成符合作战模拟使用的模型的过程,就是战场环境的二次建模(仿真建模)。经过二次建模处理的战场环境模型,就可以用于计算机作战模拟。为了保证作战模拟结果的准确、可靠,要求战场环境模型具有一定的_性,这就需要通过仿真实验对模型进行检验(验模)。

根据战场环境仿真在作战模拟中的用途,可以将其区分为数据仿真和感知仿真两种描述方式。数据仿真主要用于仿真对抗和作战评估,此时,战场环境数据是提供给电脑“认识”战场使用,不妨把由基本的战场环境数据转化成计算机能够识别的战场环境模型的过程称为“战场模型化”。感知仿真主要是针对指挥作业和训练模拟,即通过战场视景、声效等要素来展现战场环境,指挥员通过一定的操作界面来感知战场环境,达到辅助现地勘察、掌握态势和辅助决策等目的,这种“战场感知化”的结果,是供人脑认识战场使用的。战场环境的数据仿真和感知仿真都是以数字化战场环境为基础,在实际应用中,这两种仿真描述方式互为作用,根据模型驱动而改变的数据仿真通过感知化展现给参训人员,而参训人员通过人机交互可以改变数据仿真的结果。图3表述了战场环境仿真两种描述方式之间的关系。由于篇幅所限,本文只对战场环境的感知仿真的内容与关键技术加以讨论。

1.3 战场环境感知仿真的主要内容

感知仿真的目的是通过直观地展现战场环境来充分训练参训人员的指挥决策能力。其内容包括对战场环境的视觉、听觉、触觉等多种感觉通道的仿真。视觉仿真通常也称“战场可视化”,是感知仿真中的一种主要形式,就是将战场环境中可见的(如地形、地物)和不可见的(如电磁场、潮汐流场)要素以立体的、三维的或二维的图形图像表达出来。听觉仿真是指通过对战场中各作战单元的声音(音效、音量和音位)的模拟来营造战场气氛。触觉仿真是指通过对人机交互设备的操作来实现人与环境的交流,这是使参训人员产生临场感的重要手段。这种通过多感觉通道的模拟来实现临场感觉的技术就是虚拟现实技术。与传统的通过地图、实物沙盘或影像资料等来了解战场的认知方式相比,在这样的系统中,参训人员就由旁观者转变为参与者,可以主动地在逼真的环境中进行探索,从而大大地提高战场认知的效率。

2.虚拟现实与战场环境感知仿真

2.1 虚拟战场环境在感知仿真中的应用

虚拟现实(VR)这一术语诞生于上世纪80年代末,是指由计算机生成的具有临场感觉的环境[5][6],实现这种环境的技术称为虚拟现实技术。军事部门是这项技术的资助者和的_用户,而且主要用于军事训练。1988年,NASA与美国国防部共同支持研制了一个虚拟界面环境工作站VIEW(Virtual Interface Environment Workstation),该工作站由一台HP-9000计算机、一副数据手套、一个液晶头盔显示器和一套语音识别系统构成,用户可以从中看到立体图像、听到三维声、可发出口头命令、可伸手捉取由计算机生成的虚拟物体,这是_上_套虚拟现实系统[7]。此后虚拟现实技术及其产品得到飞速发展,并形成了产业,据简氏信息集团(Jane’s Information Group)的一份特别报告统计[8],到了2000年,从事与训练模拟相关的虚拟现实产品制作的公司已多达800多家,其市场将由2000年的400亿美元发展到2010年的650亿美元。

虚拟现实产品在作战模拟领域得到广泛的应用,且多数涉及战场环境仿真。运用虚拟现实技术实现战场环境仿真,其目的就是构成多维的、可感知的、可度量的、逼真的虚拟战场环境,借此提高参训人员对战场环境的认知效率。主要用于仿真对抗、导调监控、装备操作、参谋作业训练等。虚拟战场环境可以为计算机作战推演、半实兵演习、实兵演习提供与实际演习区域的仿真环境,也可以为特定的训练科目拟构出典型的训练环境(在现实中并不存在)。借助于虚拟战场环境,可以训练指挥员的指挥决策能力、参谋人员的业务能力、装备操作人员的操作能力。例如,美军从1984年开始研制的基于网络的分布式坦克训练模拟系统SIMNET,就将美国本土及欧州的10个地区作战环境置于系统之内。到了90年,已使200辆装甲车辆可异地参加_指挥的可交互的模拟演练。每个模拟器以美国的M1主战坦克为单位,提供作战区域内_的地形起伏、植被、道路、建筑物、桥梁等信息。坦克手可以在模拟器中看到由计算机实时生成的战场环境以及其他战车图像。1991年,美国为海湾战役“东经73”计划的实施提供了一套供M1A1主战坦克使用的战场环境仿真系统,将伊拉克的沙漠环境用三幅大屏幕展现在参战者面前,进行身临其境的战场研究,为_终取胜打下了关键的基础。荷兰1992年完成的毒刺导弹训练器(VST)是虚拟现实技术用于单兵武器模拟设备的代表作,它在头盔内形成一个空间动态立体场景;随操作者的头部动作而相应改变场景,以训练操作者对付敌方飞行器的机动能力和瞄准能力,予先制备的VCD盘提供各种作战环境相应的音响效果[9]。1997年,洛克希德?马丁Vought公司为美国海军航空兵训练系统项目办公室开发了一套实战演习系统TOPSCENE(战术操作实况)。这是一个综合运用军事测绘成果和虚拟现实技术的装备,被广泛应用于海军、海军陆战队、陆军和空军,已配备100多套。该系统运用SGI图形工作站(_配置为ONYX2、4个R1000CPU)来处理图像数据,在高配置下,每秒能产生30帧详细、逼真的高分辨率战场图像。系统可以模拟各种地形要素、不同的气象条件,还可仿真带有夜视仪、红外显示器或合成孔径雷达显示效果的夜间战斗过程。

2.2虚拟战场环境系统的基本构成

虚拟战场环境系统由软件系统、数据库系统和硬件系统三部分构成。其软件系统主要包括战场环境建模软件、场景纹理生成与处理软件、立体图像生成软件、观察与操作控制软件、分析应用GIS软件等;数据库系统主要包括战场地图数据库、三维环境模型数据库、武器装备数据库、环境纹理影像数据库、应用专题数据库等;硬件系统主要包括计算机、声像处理系统、感知系统(显示设备、立体观察装置、人机操纵装置)等。根据虚拟战场环境的应用需求,以上三个部分就有不同的组合方式,进而构成不同的应用系统。

就军事应用而言,虚拟战场环境主要有多人共享式和单兵沉浸式两种应用模式,相应地,虚拟战场环境系统就有多人共享式和单兵沉浸式两种构成,其主要区别在于立体图像的显示与观察方式以及对场景的控制方式上。

(1) 多人共享式。在作战指挥以及大多数作战模拟与训练中,指挥和参谋人员往往需要围绕同一个战场环境来研讨作战方案、评估作战效果。为了满足多人共享的需求,目前大多数的虚拟战场环境系统都是以大屏幕投影显示、通过立体眼镜(液晶式或偏振光式)观察来实现视觉共享,通过操纵杆或鼠标和键盘等输入设备来控制视点。其优点是处于同一空间中的用户(几人到几十人)可以同时观察到同一场景,且系统硬件价格低廉。其不足是对场景的操作只能由一人完成,且当大屏投影的图像无法占满观察者的视野时,会削弱临境感。

(2) 单兵沉浸式。在单兵对技术、战术武器装备的操作训练的应用中,需要强调的是受训者个人与武器装备及其所处环境的关系。为此,多采用头盔显示器(HMD)来作为立体显示、立体观察和头部定位跟踪装置,运用数据手套或体位跟踪器来完成定位、选择等操作。运用这些装置可以使受训者产生强烈的临境感,进而达到良好的训练效果。但其设备十分昂贵,难以推广使用,并且由于传感装置还不十分_、计算机对大数据量的场景计算能力有限,常常会造成感觉的病态反应。

3. 建构虚拟战场环境的若干关键技术

作为虚拟现实系统,一般认为需要具备三个基本特征—交互(Interaction)、沉浸(Immersion)和想象(Imagination)[10],但根据实际用途,对这“3I”特征的体现也有所侧重。就共享式虚拟战场环境系统而言,体现可交互性是重点;而对于沉浸式虚拟战场环境系统,所强调的是其沉浸特征(可进入性);无论哪种应用,想象力都是_少的。

3.1 实现“交互”的关键技术

交互特征是指系统具有对人机交互作出响应的能力,衡量这种能力的标准是系统处理和显示环境图像的刷新率(帧/秒),刷新率越高,说明系统可以对交互作出越快的响应,当交互响应达到实时,在视觉上就表现为场景随交互过程而连续平滑地变化。当交互响应有明显延时,在视觉上就表现为场景的停滞和抖动变化。显然,影响交互能力的因素除了系统硬件对于场景数据处理和显示的性能外,还与场景的数据量以及交互控制的软件有关。因此,在建构虚拟战场环境系统时,要充分考虑设备的性能以及用户的实际装备能力,软件系统开发的关键则在于场景数据的组织和管理。

在战场环境仿真应用中,参与可视化处理的场景数据包括三维地形模型、三维地物模型和地形地物的表面纹理(如果考虑到综合战场环境的构成,还应该包括武器装备模型及其纹理以及烟火特效、声效等数据),其数据量十分庞大。为了实现大数据量地景的实时交互显示,就必须解决场景数据的组织与管理问题,其思路就是在保证场景显示细节的前提下,使参与实时处理的场景数据降低到_少,以保证交互响应的效率。我们的实践表明,按人类视觉认知的规律来组织和调度场景数据是一种行之有效的方法。该规律是:从固定视点注视客观物体时,离视觉中心越近的部分在视网膜上的呈像越清晰,越远其呈像越模糊;从不同视距观察客观物体时,离物体越近,看到的物体的细节就越丰富。遵循上述规律,场景数据的组织和调度实际上就归结为场景细节层次的组织以及与视点相关的各层次数据的调度[11]。

(1) 场景细节层次的组织:场景的细节包括场景模型的细节和场景纹理的细节。场景模型的细节是指场景体形态所表达的细节,场景纹理的细节是指场景表面影像所表达的细节。场景模型的_细节取决于模型建立的数据源,对于以矢量地图数据为主要数据源的战场环境仿真应用来说,数字地图的原始比例尺决定着场景模型所描述的_细节,即比例尺越大,细节越丰富。场景纹理的_细节取决于纹理影像的数据源,当以数据地图作为仿真地面纹理的数据源时,其纹理的_细节同样与数字地图的比例尺有关,即比例尺越大,地物要素的分类分级越详细,则仿真影像所能描述的地表的细节越丰富;当以遥感影像作为地表纹理时,影像分辨率则决定着地表要素所能展现的细节。

为了达到视点越近细节越丰富的场景表达效果,需要把场景模型和纹理数据区分为多种细节层次,并按细节序列加以组织。

(2) 与视点相关的层次数据的调度:在同一个视景中,按视觉中心详细周边概略的原则来调度不同细节的模型和纹理数据,也是为保持交互与视觉效果而降低参与计算的地景数据量的有效方法。

需要说明的是,纹理细节可以在视觉上弥补模型细节的不足,即在较为概略的模型骨架上叠加细节较多的纹理,这是提高交互效率而不降低显示效果的一个有效策略。

3.2 实现“沉浸”的关键技术

沉浸特征是指系统的声像效果能够使受训者产生置身于虚拟环境中的感觉。对于大多数应用而言,营造立体视觉效果是实现“沉浸”的关键,即根据人类的双目立体视觉原理,借助于一定的设备,使观察者在生理水平上对被观察的场景产生强烈的立体感。由于在虚拟现实系统中,场景是由计算机生成的(非实地拍摄),为了达到立体效果,就需要对图像的生成、显示与观察各环节进行适人化的处理,因此该技术也被成为“人造立体视觉技术”[5][12]。

(1) 立体图像的生成。就是根据生理立体视觉的水平视差,对同一场景生成以左右眼为视点的场景图像,即构成一个像对。像对的视差是引起生理立体感的_因素,决定着场景的纵深效果。关于视差的类型及其相应的视觉效果,可参阅参考文献[12]。

(2) 立体图像的显示与观察。显示方式与观察方式密切相关,选择何种方式取决于实际应用的需求,在上述内容中描述了战场环境仿真应用中的两种显示与观察方式。这两种方式也是目前市场上的主流,但由于这两种方式都要把部分观察装置加戴在观察者的头上,而且观察效果也不够理想(如液晶眼镜会增加闪烁、降低场景亮度,LCD头盔显示分辨率偏低,CRT头盔偏重等),因此使许多用户宁可选择三维观察方式,即直接在显示器或投影幕上观看由计算机生成的单目场景视像,以场景中的光影和形态为线索,通过观察者的心理加工,产生三维感觉(实际上是一种错觉)。_近,德国Dresden 3D有限公司推出了一种立体液晶显示器,观察者无须佩带任何观察装置就可以看出立体图像。在该显示器中装配有眼动跟踪摄像机,可捕获观察者双眼的位置,由此来控制安装在液晶屏前的一个光学蒙片分别向左右眼方向偏移左右眼图像。显然,该显示器不适合于多人共享。

在战场环境仿真应用中,环境声音主要是武器装备在作战过程中所发出的诸如发动机轰鸣、_炮开火、弹药爆炸等声响。这些声响的特点是都具有确切的空间位置和声音效果,通过可描述空间声响的软件(如Direct 3D)就可以把声音的定位信息通过音响系统传递给用户。喧嚣的战场音响可以营造出生动逼真的战场氛围。

3.3 体现“想象”的几个方面

把“想象”作为虚拟现实系统的一个基本特征,表明了创造性形象思维能力对于构建虚拟现实系统的重要性。高超的创意不仅可以引发观看者心灵上的震撼,还可以引导他们达到探索的目的。对于虚拟战场环境的创建,这种想象力体现在人机界面的构想、场景表达的构想以及是否提供对战场环境的再创建手段等方面。

(1)人机界面的构想。“VR_困难的地方就是让用户的感觉对信息确信无疑”,这是比尔?盖茨对虚拟环境应该达到的_境界的理解[13]。要使用户“进入到”系统所产生的场景中并对其确信无疑,就需要有良好的人机界面。传统的人机界面是让用户隔着“窗口”来观察和操作应用软件,在虚拟环境中,这样的窗口会把用户阻隔在旁观者的位置上,无法作为参与者“进入到”环境中。因此,如何设计符合虚拟环境特点的人机交互界面就成为想象的焦点。

(2)场景描述的构想。实际上就是指虚拟场景的设计。虚拟战场环境的外观是否逼真,主要取决于场景的外观设计。当运用矢量地图数据来生成场景的表面纹理时,场景描述的构想就涉及到每一个要素的表示方法的设计(运用几何符号还是仿真图像)、地表及各要素表面噪音效果的设计、不同地貌类型的色层表的设计、武器装备等作战单元在战场环境中的表示方法的设计、作战意图与态势的表示方法设计等方面。

(3)提供实现构想的工具。在不同的军事应用中,用户对虚拟战场环境的表示方法有不同的要求,比如,对于飞行模拟训练,受训者希望能够以航空影像作为表面纹理,以便使场景在视觉上更接近于实际的地形环境。但对于作战指挥训练而言,受训者更希望场景中能够表达出地图上的分类分级信息(符号化的表示方法),以便分析和决策,这就需要在系统中为用户提供多种表达手段。此外,对于战法研究而言,用户有时需要拟构一个典型的战场环境,这也需要给用户提供实现构想的工具。

4.应用举例

从1995年以来,解放军信息工程大学测绘学院战场环境仿真工程实验室以虚拟战场环境为主题,做了大量的研究工作,取得了以“地形环境仿真系统”为代表的成果。该系统是运用虚拟现实技术,在军事测绘数据库的支持下,实现战场环境仿真的一个实用系统。主要模拟作战区域的地形环境,可以为作战模拟的各层次(战术、战役、战略)、各阶段(预案拟订、对抗模拟、结果评估)提供各种地幅的二维电子地图、三维地景和地理信息。

本系统已经初步具备了虚拟现实的基本特征(“可进入”、“可交互”),在研制过程中解决了以下几个关键技术问题:

1. 解决了在微机环境下,对地形环境的快速三维建模、模型简化以及实时交互等问题。

2. 研制出与液晶立体眼镜的接口硬件,使得在微机和工作站环境下,可以用较底价位的立体眼镜实现具有“进入感”的立体效果。

3. 解决了地形模型与其它商业化三维软件的接口问题,以及技术、战术武器在三维地形环境中的置入问题(如图5)。

目前,本系统已在全军得到广泛的应用,也在国民经济建设中得到应用,如运用本系统,为三峡移民局进行了三峡库区水淹没过程的模拟(如图6)。

5.结语

战场环境仿真是应数字化战场建设的需要而产生的_,其应用领域十分广泛。本文仅从作战模拟这一应用领域来论述虚拟现实技术在战场环境感知仿真中的应用,实际上,该技术在军事上还被应用于作战指挥、武器试验、外交谈判、灾害预测等多方面。随着虚拟现实技术日趋成熟、实用,我们相信在不远的将来,它将成为提高军队战斗力的重要的技术手段。

好了,今天关于“精确作战模拟器”的话题就到这里了。希望大家通过我的介绍对“精确作战模拟器”有更全面、深入的认识,并且能够在今后的学习中更好地运用所学知识。